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Abstract We considera problem which may be viewed as inverse to the Schwinger realization 
of Lie algebra, and suggest a procedure for deforming the algebra so obtained. We illustrate the 
method through a few simple examples extending Schwinger's su(1. 1) construction. As results, 
various q-deformed algebras are (re-)produced as well as their undeformed counterparts. Some 
extensions of the method are briefly pointed out. 

1. Inkduction 

The Schwinger method of realizing su(2) algebra in terms of the products of two independent 
sets of Heisenberg-Weyl (or oscillator, boson) algebras [l] is a typical example of the 
oscillator realization of Lie algebras. This method has been extended to the classical (super) 
Lie algebras by employing various types of oscillator algebras such as Fermi, para-Bose, 
and para-Fermi algebras as well as Heisenberg-Weyl algebras, and has been a valuable tool 
for the representation theory of Lie algebras [Z]. 

Recently, quantum deformation of a Lie.algebra 13.41 based on the deformation of a 
Lie-Poisson structure has been actively studied due to its prominent roles in diverse areas 
of physics and mathematics (for a review see [5], for example). The deformation has 
also been studied in various different approaches, such as in the form of a pseudogroup 
[6], as the transformation group of a non-commutative geometry [7,8], and by using 
filtration [9]. As in'the classical Lie algebra theory, many works have been done to realize 
the (super)quantum groups d la Schwinger method, by inixoducing various q-deformed 
oscillator algebras starting with the su&) realization in terms of q-oscillators in [lo-121. 
In particular, much attention has been paid to the generalized deformed Bose or Fermi 
oscillators of single-mode ([13-15] and references therein) or multi-modes [16] in itself in 
connection with some-physical applications as well as with the quantum group. 

In this paper we propose considering a problem which is in a sense inverse to the 
Scbwinger method as explained below, and a natural procedure of deforming the algebra 
so obtained. As shown in the text, various qdeformed algebras are produced together with 
new ones, and, moreover, many interesting extensions will be possible, as commented in 
the last section. 

Suppose an algebra is given whose generators are factorized into two independent pairs 
of operators, with one part taken as a Heisenberg-Weyl algebra for simplicity. The problem 
we address is to determine the other pair of operators that satisfy the given algebra, which 
will be called an inverse problem to the Schwinger realization. In section 2 we will state 
the problem more precisely together with our working assumptions, following closely the 
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Schwinger construction of su(1, 1) algebra as a typical example. The solution is obtained by 
solving the defining commutation relations algebraically considering the full Hilbert space, 
which will be referred to as an algebraic solution. 

Next, as a natural means to deform the algebraic solution, the following procedure 
is suggested. We take expectation values on the Hilbert space of the Heisenberg-Weyl 
algebra in the defining commutation relations of the given algebra, and find the operator 
solution obeying the resulting effective commutation relations. This solution will be called a 
deformed solution and form a deformed algebra of the one obtained in the inverse Schwinger 
problem, since it has one more parameter (due to the averaging) than the algebraic solution 
which acts like a deformation parameter, and it reduces to the algebraic one at a special 
value of the parameter. 

In section 3 we illustrate the above ideas with several specific examples. With a 
few simplifying assumptions in the first three subsections, a variety of algebras such 
as exponential phase operator (q-oscillator), Heisenberg-Weyl algebra (Calogero-Vasiliev 
algebra), and su(1, 1) algebra (su(1, 1)-CalogereVasiliev algebra) emerge as algebraic 
(deformed) solutions, respectively. In the last subsection we give an example in which the 
algebraic solution is absent, while the deformed one is an interesting q-deformed algebra 
which becomes a q-oscillator or a su,(l. I) algebra depending on the parameters. 

In the final section, we give some comments and discuss the extensions of the method. 
Some simple formulae related with the expectation values are given in the appendix for 
convenience. 
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2. Inverse Schwinger method 

We start by recalling the Schwinger construction of su(1, 1) algebra as an example, in terms 
of two sets of independent oscillators {(a, ut, na),  (b, bt, nb)) which satisfy the Heisenberg- 
Weyl algebras as in (Al). For a given su(1, 1) algebra, 

[J-, J+] = 2J0 [Jo, J*] =&.I+ (2.1) 

the Schwinger method realizes the algebra in the product forms of oscillators as follows: 

We note the following property of the Schwinger construction: 

[ni, J+] = &J+ [ni, Jo] = 0 i = a ,  b. (2.3) 

It is natural to think that the property (2.3) will determine the Schwinger construction of 
J+ as in (2.2). once JO is chosen as in (2.2). This will be an inverse procedure of the 
Schwinger method, so we call it the inverse Schwinger method. 

Let us formulate the inverse Schwinger method by taking a close analogy with the above 
su(1,l) example. A similar work can be undertaken following the su(2) construction of 
Schwinger as well. We introduce ID-, D+, Do] instead of [J-, J+, Jo), and assume the 
following commutation relations resembling (2.1) and (2.3): 

ID-, D+l = Do 

[ni, 04 = iD+ 
[ni, DO] = 0. 

i =a ,  b 
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It will be natural to take DO as a function of n. and nb in view of the last commutator (2.6), 

Do = Do(n,, nb). (2.7) 
We note that the commutation relations between DO and b* need not be specified, since 
they are obtained by (2.5). Then the algebra satisfies the Jacobi identity for the gznerators 
In.,nb,D+, D-I. 

We briefly consider the representation of the D-operator, which will be only formal 
and not explicit, since the DO is not specified yet. In the Hilbert space ([m.,mb)]. where 
nilm., mb) = mi(m., mb), mi = 0. 1.2, . . . , i = a, b, the commutator (2.4) is reduced to 
the following difference equation: 

F @ a +  l ,mb+I)-F(m,,mb)=DO(m,,mb) (2.8) 
where F(m,, mb) is the matrix element of D+D-. By noting that n, - nb commutes with 
all the generators In,, nb, D+, D-1, (2.8) can also be considered as a difference equation for 
a function of I and s, where m, = l + s and mb = I - s. The inverse problem is equivalent 
to solving (2.8) for a given Do with appropriate initial conditions on F(m,, mb). 

From now on we consider D i  operators in the product form of U -  and b-contribution. 
In order not to deviate too much from the Schwinger construction, we choose one part of 
Di as an Heisenberg-Weyl generator ( U ,  ut), and the other part, denoted E+ (which are to 
be determined by (2.4) or (2.8) for a given Do) is assumed to commute with (a, et). That 
is, we put 

D+ = atB+ D- = uB- (2.9) 
and B+ satisfy 

[a. &I = o [ut, B+] = o (2.10) 

where the last commutator follows from (2.5). 
Now, from (2.4) and (2.9) we get 

UUt&B+ - UtaB+B-~= Do(na, nb). (2.12) 

Therefore, within our assumptions, DO should be at most the first order in no to yield 
consistent algebraic solutions for B-operators, 

(2.13) Do(%,nb) = n&(nb) -k GZ(nb). 
Due to (2.11) we may put 

(2.14) 

In addition we choose 10,) as the vacuum for B-operators 
B-14) = 0. (2.15) 

Then (2.12)-(2.15) lead to a difference equation, 

C(mb + 1) - c h b )  = Gi(mb) 

C(mb 1) = Gz(mb) mb=1 ,2 ,  .... (2.16) 

C(1) = Gi(0) = Gz(0) 

This is the equation to solve  for^ the inverse Schwinger method, and its solution will be 
called an algebraic solution. Note that this equation appears also in the investigation of  



1008 

deformed single-mode oscillators in general (see, for example, [ 15]), although our motivation 
is different. 

As mentioned in the introduction, we proceed to obtain the deformed algebra of the 
above one given by (2.16). We simply take expectation values on the Hilbert space of the 
a-oscillators in (2.12) using (A6) and (A7). 

&-B+ - Gz(nb)) - (B+B- +Gl(nb)  - Gdnb)) 0 (2.17) 

where q2 = eacm, co is the quantum level of the a-oscillator, and-is used to denote that the 
expectation values are taken for the a-oscillators. Referring to (2.11), there still holds 
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- -  - _  

I 

[nb, &] *&. (2.18) 

Thus putting, as in (2.14), - 
.mb = 0, 1, 2,. . . (2.19) 

B+lmb) = ) / G I m b  + 1) 

B-lmb f 1) = l / G I m b )  
- 

and with the choice of vacuum as in (2.15), 

g-lob) = 0 (2.20) 

we obtain from (2.17) the following equation for the deformed solution: 

Now we make some comments. Taking expectation values can be viewed as a thermal 
average physically if we imagine a system whose Hamiltonian is h. = conn and the B- 
operators distinguish the degenerate energy eigenstates, as in a Landau problem, for instance. 
Alternatively, any relevant weighted average may be taken as being associated with the 
system under consideration described by commuting operators a* and B*. Compared 
with (2.16), which fully takes account of the operator equation (2.12), the above (2.21) 
may contain only limited, or in a sense averaged, information connected to the a-oscillator. 
Thus, we call (2.17) or (2.21) an effective commutation relation of (2.12). Since the solution 
to (2.21) will contain the parameter q and reduce to the algebraic solution to (2.12) or (2.16) 
as q --t CO, 'it will be referred to as a deformed solution with a deformation parameter q .  
In the next section we examine simple cases of the inverse Schwinger method and present 
the corresponding algebraic and deformed solutions as illustrations of using it to obtain 
deformed algebras. 

3. Algebraic solutio" and deformations 

We restrict our attention to the following forms of Gl(mb), Gz(mb), 

in which case the difference equations (2.16), (2.21) become homogeneous. An example of 
the inhomogeneous difference equation will be given in subsection 3.4. 

To obtain the algebraic solution we should consider g(0) = 0 in solving (2.16) in order 
to satisfy the initial condition in (2.16). Then the algebraic solution is given by 

B-B+ = g(nb + 1) B+B- = g(nb). (3.2) 
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B-B+ = g(nb + 1 )  - goq-z(nb+l) 
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The deformed solution is obtained from (2.21) as - -  - -  
B+B- = g(nb) - goq-2”h (3.3) 

where go = g(0) is not restricted to zero in this case. 
To avoid possible misunderstandings we stress that the solution to (2.16), which we are 

referring to as the algebraic solution (3.2), is the true solution to the problem we termed 
an inverse Schwinger problem, and exists only if g(0) = 0 for the choice of vacuum as 
in (2.15). However, the effktive commutation relation (2.17), which is obtained b~ taking 

~ ~ expectation values on the a-oscillators in (2.16), admits a more general solution B+ given 
in (3.3) sharing the same properties 9 BI (compare equations (2.18), (2.19). (2.20) with 
(2.11), (2.14), (2.15)). In addition B+ are reduced to B& as q + CO, which suggests 
interpreting them as deformed operators of B+ with a deformation parameter q. 

In the following subsections 3.1-3.3 we examine some examples of solutions in detail 
with g(mb) of the form, 

(3.4) 

taking g(0) to be zero for the algebraic solution or as a non-zero parameter for the deformed 
solution, respectively, as mentioned above. This must be the simplest generalization of the 
Schwinger realization of the su(1, 1 )  case which corresponds to CO = cz = 0, ct = 1, and 
g(0) = 0. 

g(mb) = CO + clmb + czm; mb = 1 , ~ .  . . 

3.1. Exponential p h e  operator and its q-deformation 

We consider, the case cI = c2 = 0 and normalize CO = 1 in (3.4). In this case (3.2) is 

B-B+ = 1 B+B- = 1 - 1ob)(obl. (3.5) 

The explicit forms of B* are given by (see (2.14)) 

(3.6) 

These have been known as Susskind and Glogower’s exponential phase operators [17,18J 
which are non-unitary and non-commuting. Equations (2.11) and (2.15) are 

[nb, eT’+I = +eF’+ (3.7) 

e‘+lOb) = 0. (3.8) 

W e  note that the b-oscillators obeying the Heisenberg-Weyl algebra are expressed in the 
‘polar’ decomposition form as follows by using the above exponential phase operators: 

b =ei’& bt = &e-i’. (3.9) 

Let us consider the deformed  solution^ (3.3) given as 

(3.10) 
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If we take go = 0, (3.5) is recovered. Thus a non-zero go gives the qdeformation. Equations 
(2.18) and (2.17) are 
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(3.11) 

and we recall that the vacuum is chosen as usual in (2.20). Note that when go = 1, (3.11) 
is a version of the q-deformed oscillator introduced in [lo]. 

Introducing the q-deformed number operator {nb} as 

{nb} = 1 - gOq-&' (3.12) 

we can write the explicit form of E* in terms of the above exponential phase operator E+ 
5- = e'Qm E+ = me+. (3.13) 

This form is essentially equivalent to that of the b-oscillator (3.9) with changes only in 
the 'amplitude' part by replacing the normal number opErator of the b-oscillator into the 
q-number operator (lib]. Thus the Hilbert yace for the B-operators is the same as that of 
the exponential phase operator. Since the E+ reduce to the exponential phase operator as 
q + CO, they may be considered as a q-deformation of the exponential phase operators. 

It is clear from the above that q-deformation alters the amplitude part of the operator 
leaving the phase part, the exponential phase operator, unchanged, which is a well known 
fact. This feature shows up repeatedly in the following subsections, as in the second 
equations of (3.5), (3.10). (3.11). It does not cause any difficulty in writing a polar 
decomposition form for a deformed operator as seen in (3.13). However, we will frequently 
pay attention only to a case where the commutation relation takes a simple form (e.g. take 
go = 1 in (3.1 1)). 

3.2. Oscillator and Calogero-Vmiliev oscillator 

Let us consider the case where c2 = 0, c1 = 1 in (3.4). The algebraic solution (3.2) is 

B-B+ =nb + 1 f Co 

B+B- =(nb+C0)(1 -lob)(obl). 
(3.14) 

Using the exponential phase operator (3.6) introduced in the previous subsection, B* are 
B- = e'+- B+ = -e-iQ. (3.15) 

When CO = 0 these E+ become normal b-oscillators and correspond to the Schwinger 
realization of su(1, 1). 

The deformed solution (3.3) is given by 

(3.16) 

The E* can also be written in the polar form, as in section 3.1, with changes occumng in 
the amplitude part only. 

Considering the case CO =go (see the remark at the end of section 3.1), the commutator 
for is given by 

(3.17) 

with [nb, E*] = &E*. This algebra is a q-deformation of a usual Heisenberg-Weyl algebra 
which is recovered as q + CO. 

- I  

[ B - ,  E+]= 1 - co(q -2 - 



Deformed algebras from the inverse Schwinger method 101 1 

Let us note that if we put formally qZ2 %.-l, the algebra (3.17) is the Calogero- 
Vasilievt algebra: we change the notation B-, B,, CO into C ,  Ct, v ,  respectively. Then we 
have 

(3.18) CCt = nb + 1 + v + UK ctc =nb f v -  UK, 
where the parity operator K is given by 

K = (-l)"h 

K C  = - C K '  

K 2  = 1 

K C t  = -dK. 
(3.19) 

The explicit forms of C, Ct, are given by 

C = e " J n b + V - V K  Ct = J n b f V - u K e - " .  . (3.20) 
Thus a CalogerwVasiliev algebra with the deforming parameter U is obtained 

[C, C t ]  = 1 + 2uK 

[n,, Cl = -C 
where the number operator nc is defined as 

(3.21) 
[nc, C ~ I  = ct 

nc = i (CCt  +CtC - 1) nb+ v .  (3.22) 

3.3. Holstein-Primakoff and Calogero-Variliev extension of su(1, 1 )  

Let us consider the algebraic solution (3.2) for c2 = 1. In this case the solution is 

B-B+ = (ab + l)(nb + 1 f C1) +CO 

B+B- 
(3.23) 

(nb(nb f c l )  +cO)(l - lob)(Obl). 

Specializing to the case CO = 0, B* together with BO defined as 

BO = nb f i ( C 1  f l )  (3.24) 
realize the s u ( 1 , l )  algebra known as the Holstein-Primakoff realization [27], 

. .  

B- = 64- 

Bt = J B ~  + ;(cl - l ) b t  (3.25) 

[E-, B+] = 2Bo [Bo, B*] =&E*. 
The deformed solution (3.3) is obtained as - -  

B-B+ = (nb f l)(nb + 1 + c1) f CO - gOq-2(nb") 

B+B-~= (nb(nb+cl)+CO-gOq-2nb)(1 - Iob)(ob1). 
- _  (3.26) 

Let us consider the case CO = go. Then & together with & defined as 

(3.27) -2 -2na - 
BO=nb+$(C1+1+cO( l -q  )q ) 

realize a q-deformed su(l ,  1) algebra (not in a standard form), - - - [E-, E,] = 2B0 [Bo, B*] = &B* (3.28) 

t This is the simplest case of the extended Heisenberg algebra involving exchange operaton [19-21]'which 
is widely used in the study of the integrable Caloger~MoserSutherland-ty~ many-body systems. It is also 
equivalent to the single-level para-bose algebra P2-241 and its q-deformation is performed in [E, 261. 
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and reduce to the abovekolstein-F'rimakoff realization (3.25) as q + 00. 

In this case if we put formally q-' = -1, as in  the previous subsection, we find an 
interesting deformed su(1, 1) algebra realized by the Calogero-Vasiliev os_cillator C, Ct 
introduced in (3.18)-(3.22): let CI = 2co + 1. We change the notations of E*, BO, CO into 
JZ ,  J t ,  U, respectively. Their explicit forms are 

Kyung-Hyun Cho and S U Park 

1: = C J m  

Jf = J-Ct (3.29) 

J t = n n , + l  
where the parity operator K and the number operator n, of the CalogereVasiliev oscillator 
are given in equations (3.19). (3.22). The aforementioned deformed su(1, 1) is obtained as 

(3.30) 

which reduce to the Holstein-Primakoff realization (3.25) of the su(1, 1) algebra by an 
ordinary oscillator when U = 0. 

3.4. q-Holstein-Pridofl realization of suq( 1, 1) 

As an example of a more complicated case of the inverse Schwinger method, let us consider 
DO which leads to an inhomogeneous difference equation from (2.12). We take DO as 

(3.31) 
where e(x )  is the Heaviside step function and p, A are integers of 0 < A < @. The function 
takes unity as its value in the finite interval A < n, < p with @ - A~+ 1)-independent 
states. 

The equation (2.12) has no solution for above DO; however, on taking expectation values 
on the a-oscillator it admits a non-trivial solution. Using (A5), the expectation value of the 
step function (3.31) is given by 

(3.32) 

(3.33) 

With the vacuum as in (2.20). the solution to (3.33) is easily obtained and related with 

[J!, Jf] = 2 J t + 2 u K  

J i K  = - K J C  * 
[ J J ,  Jfl =&If 

J l K  = KJ,C 

Do(n,, n d  = e((n, + 4 - A)(@ + $ - n o ) )  

(e((n, + - A)(P + 4 - n o ) ) )  = q-n(l - q-2(p-A+1)) 

and the resulting effective commutation relation is 

and [nb, E*] = &E* from (2.18). 

the q-deformed operators given in section 3.1 by a simple normalization. When we take 

the solution to (3.33) is also related to the q-deformed operators of section 3.1 by a nb- 
dependent transformation. 

2 - -  - -  2 q B-B+ - B+B- = (q - l)q-Z(l - q-*"-"+") 

@ + W  A = nb (3.34) 

Another interesting case is 
p = 2(nb +a) - 1 A =O.  (3.35) 
Y U 

Transforming {a, nb] into new generators {J*, Jo] related by 
w 
J- = (42 - 1)-1E-q"b+o+1/2 

z = (42 - 1)- 1 4 na+s+1/2g" + 
Jo=nb+U 

(3.36) 
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then {z, Jo] satisfy the su,(l, 1) algebra: 

6, ?+I = [2&] [Jo, ?*I = *?* (3.37) 

where [XI = (qx - q-x)/(q - q-') is a normal q-number. Explicitly, 

(3.38) 

with the standard q-oscillators b,. b i ,  give the q-Holstein-Primakoff realization of su,(l, 1) 
in terms of a q-oscillator [28,29]. 

4. Discussion 

We have considered an inverse problem to the well known Schwinger realization of Lie 
algebras. Taking Schwinger's su(1, 1) construction by two commuting oscillators as our 
model case, we have made a few assumptions to explain the ideas in a simple setting as given 
in sections 2 and 3. However, various interesting examples such as the exponential phase 
operators, normal oscillators, and the Holstein-F'rimakoff realization of su(1, 1) algebra 
appear as solutions to the inverse problem we considered, although they have been known 
from other motivations. 

More importantly, we have obtained the corresponding q-deformed algebras naturally 
by solving the effective commutation relations. Therefore, on the basis of simple but non- 
trivial examples examined in section 3, we may regard the procedure taken in this paper as 
an efficient way of obtaining deformed algebras. It will be worthwhile to understand the 
mathematical shucture involved in this procedure. In particular, the q-Heisenberg-Weyl 
algebra of the subsection 3.1 has been explained on the basis of the contact metric structure 
of the Heisenberg-Weyl group manifold [30]. 

If we extend the above inverse Schwinger method to the fermionic algebra [31], as in 
sections 2 and 3, we can easily find the various fermionic q-deformed algebras. Extension to 
the multi-mode case is also possible. As a simplest case, one may find a set of independent 
oscillators and corresponding q-oscillators. More non-trivial q-deformed systems, such as 
the SU, (N)-covariant system of q-oscillators, will appear through considerations similar to 
those in subsection 3.4. Further detailed description is in preparation, and will be reported. 

Appendix 

We consider a singlemode oscillator with generators In.. at, a] obeying the following 
familiar commutation relations ; 

[a, a'] = 1 [n,, a] = - a [n,,a+] = at (AI) 

where n. = uta. The Hilbert space for the oscillator is spanned by the number eigenstates 
[ma),  m, = 0 ,1 ,2 ,  . . . . We take the Hamiltonian ha 

h. =can. = e,ab ('42) 

where ca is its quantal energy level. The expectation value of an operator @ is defined by 
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where the denominator represents the character of the oscillator algebra with q2 = ep'. , 
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(A4) 
1 x = e = - 1 - q-l ' 

We present some expectation values for later use: 

(A5) + I - .)) = e-=oen - -?a 
a 2  - - 4  

where O(x)  is a step function. In 0\5), when IY = 0, the expectation value of 0(n, + $) is 
equivalent to that of the unit. 
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